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LETTER TO THE EDITOR 

The electromagnetic four-potential derived as a path integral 

J R Ellis 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
BNI 9QH, UK 

Received 19 September 1984 

Abstract. An expression for the four-potential of an em field is derived as a path integral 
involving the fields, the formula being analogous to one given in elementary vector analysis. 

When the vector field F ( r )  is solenoidal in a region R (div F ( r )  = 0 in R ) ,  provided 
F ( r )  is continuously differentiable in R, a vector potential C ( r )  exists for F ( r )  
( F (  r )  = curl C( r ) )  given by 

C (  r )  = tF( t r )  A r dt, ( 1 )  I: 
to which may be added the gradient of any arbitrary scalar field ( F (  t r )  A r Z 0). The 
formula ( 1 )  was derived by Liebmann (1908) and remained unnoticed in the literature 
until it was rederived by Brand (1950). The method of its derivation based on a ‘cone 
construction’ is also given by Spain (1965), who cites the reference of Brand in his 
derivation. The formula ( 1)  resembles the straight-path integral expression for the 
scalar potential for an irrotational field F ( r ) ,  

4( r )  = lo’ F (  t r )  r d t  ( 2 )  

(curl F ( r )  = 0 ,  F ( r )  =grad 4 ( r ) ) ,  though if one tries to extend ( 1 )  to curved paths in 
the same way as one extends ( 2 ) ,  the generalisation is by no means clear. A generalisa- 
tion of ( 1 )  to curved paths does exist. This is based on what might (for brevity) be 
termed a ‘curved cone construction’ where there exists a family of curves emanating 
from the origin, generating a surface shaped like a cone. This family replaces the 
family of straight lines which generate the cone in the usual derivation. In this letter 
we derive the generalised formula emphasising the applications of it to Maxwell’s 
equations which appear not to have been noted before. For example, an expression 
for the four-potential A” as a path integral involving the fields appears not to have 
been noted before. 

For the generalisation of ( 1 )  to curved paths we cite G N Ward, who has considered 
the detailed circumstances under which a vector potential exists for a solenoidal field 
using curvilinear coordinates (unpublished). The initial work used in this is applied 
to the present problem. We take a curved path from the origin 0 to the point P with 
position vector ro, describing this curve with parameter t ( O S  t s 1) .  For the construc- 
tion of the generalised formula and for the construction of ( 1 )  it is necessary also to 
define a family of curves R = f ( r ,  t ) ,  0 S t S 1 of which the given curve is a member 
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(the member R = f ( r o ,  t ) ,  O G  ts 1) .  Each curve of the family starts at 0 and ends at 
r, so that f( r, 0) = 0 and f( r, 1 )  = r for each curve specified by r. (It is assumed that 
f(r, t )  is twice continuously differentiable with respect to r and to t.) An example of 
such a function is tr, and this specialisation will reduce the following argument to the 
proof of ( 1 )  using the usual cone construction referred to earlier. We consider the 
curved surface S, generated by the subfamily of curves R =f(r(s), t )  in which t varies 
continuously from 0 to 1 and r ( s )  is the position vector of a point on an arbitrary 
closed plane curve r ;  this curve is to lie in a fixed plane through P (P having position 
vector ro) and to enclose P. The parameter s is the distance parameter measured along 
r from some fixed point on it in a right-handed sense relative to the outward-drawn 
normal to the plane base (formed by r) of the cone-shaped body. This base we shall 
denote by S,  (see figure 1). For the purposes of the calculation, r is taken infinitesimally 
close to P and the curves R =f(r(s), t )  likewise are taken close to the given curve. 
The given curve is ultimately the path along which the integration analogous to (1)  is 
performed, and this situation is reached by a limiting process in which r contracts to 
P (while maintaining its fixed inclination) and the surface SI contracts to the curve 
OP. Before this limit is taken, Gauss’s theorem applies to the (infinitesimal) cone- 
shaped domain bounded by SI and S2 and under the circumstances we have described, 
the normal surface element on S, is given by 

Now using component notation Xi -f;(x,(s), t ) ,  i, j = 1,2,3, for R =f(r(s), t ) ,  

(we omit the arguments o f f  and in future suppress suffixes in arguments when they 
are given). We have 

and 

s2 

using Stokes’s theorem as in the usual cone construction, where G ( r )  is the vector 
potential for F ( r ) .  Applying Gauss’s theorem to the domain SI + S2 and taking the 
limit as described earlier (noting the fixed inclination of S2 is arbitrary), 

holds at r = ro ( x i  = x o i ) ,  where J denotes J(x, 2 ) .  The parameter s no longer appears. 
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Figure 1. 

k4Also since ro is arbitrary within the space of the arguments off ;  formula (3) applies 
generally for any r and is valid to the extent of an added gradient. 

For the generalisation of (3) to Maxwell’s equations we use relativistic notation 
(Greek suffixes range from 0 to 3). The metric of special relativity is taken in the form 
c2dT2=gpy dxp d x ”  with g,,=diag(l, -1, -1,-1) and x o = c t ;  we define duality (*) 
in the ordinary way. Maxwell’s equations are taken in the form F”Ty =j ” ,  F*,Yy = 0 
and the latter equation states that F*gu is four-solenoidal. With the aid of the preceding 
work we deduce that FIpU is a four-dimensional curl: 

F*@’”(x )  = E ~ ~ ~ ’ ~ , A ~ ( X )  (4) 

where the four-potential A“(x)  is given by 

(to within an added gradient), the variable x‘ taking the role of the previous f: The 
integration in ( 5 )  is assumed performed along a world-line (or along a spacelike curve) 
from (O ,O,  0,O) to (x”). The parameter specifying the event on the path is t ( 0 6  t 6 1)  
and the path itself is giveti by the equations x’” = x’”(x, t )  where (x,) is the end-point. 
By varying (x”)  the family of such paths is represented. In the case where these paths 
are straight lines, given by 

X’P = tx’”, O < t S l ,  

(x”)  being an event in the future, the parameter t is proportional to the proper time 
measured along the world-line from 0 to (x,), and formula (5) then reduces to 

A,(x) = jo’ tF,,(tx)xY dt, 

this formula being fully analogous to (1).  The expression (6) may be verified directly. 
We adopt the method of Brand’s vector analytic verification of ( I )  (Brand (1950) 
pp 163-4): 

Aa,’(x)= j,,’ t2F,,,p(tx)xY d t +  
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t 2 F a p , y ( t x ) x Y  d t +  2tFo,(rx) d t  
= Io1 Ioi 
= I,,’ (a/at)( t*F, , ( tx))  dt  

= Fap(X). 
(The equivalent form of Maxwell’s equations F*”’,y = 0 and the identity 

(a/ at  ) Fup ( tx 1 = Fa@, y ( tx ) (a/ a t ) ( tx ) 

have been used.) The formula ( 6 )  automatically satisfies the Lorentz condition A,,, = 0 
when the integration is performed along a path in a source-free region of spacetime-it 
is assumed in ( 6 )  that FWv satisfies the further equation FWw,v = j ” .  (We note that there 
is a similarity to the formally covariant equations for A: based on the Coulomb gauge 
(Rohrlich 1965) .) 

Finally we note that the form (3)  may be used to find the representation of A ,  in 
terms of a tensor potential. From the Lorentz condition A,,“ = O  (four-solenoidal in 
the above sense) we deduce 

A, (x )  = ( ~ / ~ ! ) E , ~ ~ , ~ ~ T ~ ~ ( x )  

where T U P  is antisymmetric. Thus A , ( x )  = a P T & ( x ) ,  and T$ represents the Hertz 
tensor potential of the em field whose components are the Hertz vectors 
(( T&,  Tt2, T & )  = n, ( T e  T3*1, TT2) = c r ) .  A path integral form for either T a p  or T &  
may be deduced directly from (3). 

There may be possible applications to conservation laws and one might not rule 
out the application of (3) to relativistic quantum (field) theory. 
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